Uniform Error Bounds of an Exponential Wave Integrator for the Long-Time Dynamics of the Nonlinear Klein--Gordon Equation

نویسندگان

چکیده

We establish uniform error bounds of an exponential wave integrator Fourier pseudospectral (EWI-FP) method for the long-time dynamics nonlinear Klein--Gordon equation (NKGE) with a cubic nonlinearity whose strength is characterized by $\varepsilon^2$ $\varepsilon \in (0, 1]$ dimensionless parameter. When $0 < \varepsilon \ll 1$, problem equivalent to NKGE small initial data (and $O(1)$ nonlinearity), while amplitude solution) at $O(\varepsilon)$. For up time $O(1/\varepsilon^{2})$, resolution and classical numerical methods depend significantly on parameter $\varepsilon$, which causes severe burdens as \to 0^+$. The EWI-FP fully explicit, symmetric in time, has many superior properties solving equations. By adapting energy combined mathematical induction, we rigorously carry out discretization $O(h^{m_0} + \varepsilon^{2-\beta}\tau^2)$ $O(1/\varepsilon^{\beta})$ \leq \beta 2$, mesh size $h$, step $\tau$ $m_0$ integer depending regularity solution. rescaling our results are straightforwardly extended those $\varepsilon$-scalability (or meshing strategy requirement) oscillatory NKGE, solution propagates waves wavelength $O(\varepsilon^{\beta})$ space respectively, speed $O(\varepsilon^{-\beta})$. Finally, extensive reported confirm estimates.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Exponential Wave Integrator Pseudospectral Method for the Klein-gordon-zakharov System

An exponential wave integrator sine pseudospectral method is presented and analyzed for discretizing the Klein-Gordon-Zakharov (KGZ) system with two dimensionless parameters 0 < ε ≤ 1 and 0 < γ ≤ 1 which are inversely proportional to the plasma frequency and the speed of sound, respectively. The main idea in the numerical method is to apply the sine pseudospectral discretization for spatial der...

متن کامل

An Exponential Wave Integrator Sine Pseudospectral Method for the Klein-Gordon-Zakharov System

An exponential wave integrator sine pseudospectral method is presented and analyzed for discretizing the Klein-Gordon-Zakharov (KGZ) system with two dimensionless parameters 0 < ε ≤ 1 and 0 < γ ≤ 1 which are inversely proportional to the plasma frequency and the speed of sound, respectively. The main idea in the numerical method is to apply the sine pseudospectral discretization for spatial der...

متن کامل

Nonlinear Klein-Gordon Equation

An extended ( ′ G )–expansion method is obtained by improving the form of solution in ( G′ G )– expansion method which is proposed in recent years. By using the extended ( ′ G )–expansion method and with the aid of homogeneous balance principle, many explicit and exact travelling wave solutions with two arbitrary parameters to the Klein-Gordon equation are presented, including the hyperbolic so...

متن کامل

Solitons for the nonlinear Klein-Gordon equation

In this paper we study existence and orbital stability for solitary waves of the nonlinear Klein-Gordon equation. The energy of these solutions travels as a localized packet, hence they are a particular type of solitons. In particular we are interested in sufficient conditions on the potential for the existence of solitons. Our proof is based on the study of the ratio energy/charge of a functio...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Multiscale Modeling & Simulation

سال: 2021

ISSN: ['1540-3459', '1540-3467']

DOI: https://doi.org/10.1137/20m1327677